Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study

Abstract

We present a computational study of a simple finite-dimensional feedback control algorithm for stabilizing solutions of infinite-dimensional dissipative evolution equations such as reaction-diffusion systems, the Navier-Stokes equations and the Kuramoto-Sivashinsky equation. This feedback control scheme takes advantage of the fact that such systems possess finite number of determining parameters or degrees of freedom, namely, finite number of determining Fourier modes, determining nodes, and determining interpolants and projections. In particular, the feedback control scheme uses finitely many of such observables and controllers that are acting on the coarse spatial scales. We demonstrate our numerical results for the stabilization of the unstable zero solution of the 1D Chafee-Infante equation and 1D Kuramoto-Sivashinksky equation. We give rigorous stability analysis for the feedback control algorithm and derive sufficient conditions relating the control parameters and model parameter values to attune to the control objective.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View