- Main
Atmospheric methane consumption in arid ecosystems acts as a reverse chimney and is accelerated by plant-methanotroph biomes.
Published Web Location
https://doi.org/10.1093/ismejo/wraf026Abstract
Drylands cover one-third of the Earths surface and are one of the largest terrestrial sinks for methane. Understanding the structure-function interplay between members of arid biomes can provide critical insights into mechanisms of resilience toward anthropogenic and climate-change-driven environmental stressors-water scarcity, heatwaves, and increased atmospheric greenhouse gases. This study integrates in situ measurements with culture-independent and enrichment-based investigations of methane-consuming microbiomes inhabiting soil in the Anza-Borrego Desert, a model arid ecosystem in Southern California, United States. The atmospheric methane consumption ranged between 2.26 and 12.73 μmol m2 h-1, peaking during the daytime at vegetated sites. Metagenomic studies revealed similar soil-microbiome compositions at vegetated and unvegetated sites, with Methylocaldum being the major methanotrophic clade. Eighty-four metagenome-assembled genomes were recovered, six represented by methanotrophic bacteria (three Methylocaldum, two Methylobacter, and uncultivated Methylococcaceae). The prevalence of copper-containing methane monooxygenases in metagenomic datasets suggests a diverse potential for methane oxidation in canonical methanotrophs and uncultivated Gammaproteobacteria. Five pure cultures of methanotrophic bacteria were obtained, including four Methylocaldum. Genomic analysis of Methylocaldum isolates and metagenome-assembled genomes revealed the presence of multiple stand-alone methane monooxygenase subunit C paralogs, which may have functions beyond methane oxidation. Furthermore, these methanotrophs have genetic signatures typically linked to symbiotic interactions with plants, including tryptophan synthesis and indole-3-acetic acid production. Based on in situ fluxes and soil microbiome compositions, we propose the existence of arid-soil reverse chimneys, an empowered methane sink represented by yet-to-be-defined cooperation between desert vegetation and methane-consuming microbiomes.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.