Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm


We study the problem of decomposing a volume with a smooth boundary into a collection of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from weighted α-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the surface, yielding the first provably-correct algorithm for this problem. Given a κ-sparse ε-sample, we work with the balls of radius δ times the local feature size centered at each sample. The corners of the union of these balls on both sides of the surface are the Voronoi sites and the interface of their cells is a watertight surface reconstruction embedded in the dual shape of the union of balls. With the surface protected, the enclosed volume can be further decomposed by generating more sites inside it. Compared to clipping-based algorithms, VoroCrust cells are full Voronoi cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume by either structured or randomly genenerated samples.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View