Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Large‐scale distribution of CH4 in the western North Pacific: Sources and transport from the Asian continent

Abstract

Methane (CH4) Mixing ratios in the northern Pacific Basin were sampled from two aircraft during the TRACE-P mission (Transport and Chemical Evolution over the Pacific) from late February through early April 2001 using a tunable diode laser system. Described in the more detail by Jacob et al. [2003], the mission was designed to characterize Asian outflow to the Pacific, determine its chemical evolution, and assess changes to the atmosphere resulting from the rapid industrialization and increased energy usage on the Asian continent. The high-resolution, high-precision data set of roughly 13,800 CH4 measurements ranged between 1602 ppbv in stratospherically influenced air and 2149 ppbv in highly polluted air. Overall, CH4 mixing ratios were highly correlated with a variety of other trace gases characteristic of a mix of anthropogenic industrial and combustion sources and were strikingly correlated with ethane (C2H6) in particular. Averages with latitude in the near-surface (0-2 km) show that CH4 was elevated well above background levels north of 15°N close to the Asian continent. In the central and eastern Pacific, levels of CH4 were lower as continental inputs were mixed horizontally and vertically during transport. Overall, the correlation between CH4 and other hydrocarbons such as ethane (C2H6), ethyne (C2H2), and propane (C3H8) as well as the urban/industrial tracer perchloroethene (C2Cl4), suggests that for CH4 colocated sources such as landfills, wastewater treatment, and fossil fuel use associated with urban areas dominate regional inputs at this time. Comparisons between measurements made during TRACE-P and those of PEM-West B, flown during roughly the same time of year and under similar meteorological setting 7 years earlier, suggests that although the TRACE-P CH4 observations are higher, the changes are not significantly greater than the increases seen in backgroound air over this time interval.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View