Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

RNA Editing of the Human DNA Glycosylase NEIL1 Alters Its Removal of 5‑Hydroxyuracil Lesions in DNA

Abstract

Editing of the pre-mRNA of the DNA repair glycosylase NEIL1 results in substitution of a Lys with Arg in the lesion recognition loop of the enzyme. Unedited (UE, Lys242) NEIL1 removes thymine glycol lesions in DNA ∼30 times faster than edited (Ed, Arg242) NEIL1. Herein, we evaluated recognition and excision mediated by UE and Ed NEIL1 of 5-hydroxyuracil (5-OHU), a highly mutagenic lesion formed via oxidation of cytosine. Both NEIL1 isoforms catalyzed low levels of 5-OHU excision in single-stranded DNA, bubble and bulge DNA contexts and in duplex DNA base paired with A. Removal of 5-OHU in base pairs with G, T, and C was found to be faster and proceed to a higher overall extent with UE than with Ed NEIL1. In addition, the presence of mismatches adjacent to 5-OHU magnified the hampered activity of the Ed isoform. However, Ed NEIL1 was found to exhibit higher affinity for 5-OHU:G and 5-OHU:C duplexes than UE NEIL1. These results suggest that NEIL1 plays an important role in detecting and capturing 5-OHU lesions in inappropriate contexts, in a manner that does not lead to excision, to prevent mutations and strand breaks. Indeed, inefficient removal of 5-OHU by NEIL1 from 5-OHU:A base pairs formed during replication would thwart mutagenesis. Notably, nonproductive engagement of 5-OHU by Ed NEIL1 suggests the extent of 5-OHU repair will be reduced under cellular conditions, such as inflammation, that increase the extent of NEIL1 RNA editing. Tipping the balance between the two NEIL1 isoforms may be a significant factor leading to genome instability.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View