The eigencurve over the boundary of weight space
Skip to main content
eScholarship
Open Access Publications from the University of California

The eigencurve over the boundary of weight space

  • Author(s): Liu, Ruochuan
  • Wan, Daqing
  • Xiao, Liang
  • et al.
Abstract

We prove that the eigencurve associated to a definite quaternion algebra over $\QQ$ satisfies the following properties, as conjectured by Coleman--Mazur and Buzzard--Kilford: (a) over the boundary annuli of weight space, the eigencurve is a disjoint union of (countably) infinitely many connected components each finite and flat over the weight annuli, (b) the $U_p$-slopes of points on each fixed connected component are proportional to the $p$-adic valuations of the parameter on weight space, and (c) the sequence of the slope ratios form a union of finitely many arithmetic progressions with the same common difference. In particular, as a point moves towards the boundary on an irreducible connected component of the eigencurve, the slope converges to zero.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View