Skip to main content
Open Access Publications from the University of California

Effects of Copper Chelation on BRAFV600E Positive Colon Carcinoma Cells.

  • Author(s): Baldari, Silvia;
  • Di Rocco, Giuliana;
  • Heffern, Marie C;
  • Su, Timothy A;
  • Chang, Christopher J;
  • Toietta, Gabriele
  • et al.

High affinity copper binding to mitogen-activated protein kinase kinase 1 (MAP2K1, also known as MEK1) allosterically promotes the kinase activity of MEK1/2 on extracellular signal regulated kinases 1 and 2 (ERK1/2). Consequently, copper-dependent activation of the mitogen-activated (MAP) kinase pathway has a role in promoting tumor growth. Conversely, copper chelation may represent a possible therapeutic approach for a specific subset of tumors characterized by activating mutations in the serine/threonine protein kinase V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF), such as the V600E, occurring within the kinase domain (BRAFV600E). Tetrathiomolybdate (TM) is a specific copper chelating agent currently used for the treatment of Wilson's disease and in preclinical studies for the management of metastatic cancers owing to its anti-angiogenic and anti-inflammatory properties. We evaluated in vitro and in vivo the effects of copper depletion achieved by pharmacological treatment with TM in human colorectal cells bearing the BRAFV600E mutation in comparison with BRAF wild type cells. We provide evidence that selective copper chelation differentially affects proliferation, survival and migration of colon cancer cells bearing the BRAFV600E mutation compared to BRAFwt acting via differential phosphorylation levels of ERK1/2. Moreover, tetrathiomolybdate treatment was also effective in reducing the clonogenic potential of colon cancer BRAFV600E cells resistant to BRAF pharmacological inhibition. In conclusion, these results support further assessment of copper chelation therapy as an adjuvant therapy for inhibiting the progression of colon cancers containing the BRAFV600E mutation.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View