Dark Energy: A Short Review
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Dark Energy: A Short Review

Abstract

The accelerating expansion of the universe is the most surprising cosmological discovery in many decades. In this short review, we briefly summarize theories for the origin of cosmic acceleration and the observational methods being used to test these theories. We then discuss the current observational state of the field, with constraints from the cosmic microwave background (CMB), baryon acoustic oscillations (BAO), Type Ia supernovae (SN), direct measurements of the Hubble constant ($H_0$), and measurements of galaxy and matter clustering. Assuming a flat universe and dark energy with a constant equation-of-state parameter $w = P/\rho$, the combination of Planck CMB temperature anisotropies, WMAP CMB polarization, the Union2.1 SN compilation, and a compilation of BAO measurements yields $w = -1.10^{+0.08}_{-0.07}$, consistent with a cosmological constant ($w=-1$). However, with these constraints the cosmological constant model predicts a value of $H_0$ that is lower than several of the leading recent estimates, and it predicts a parameter combination $\sigma_8(\Omega_m)^{0.5}$ that is higher than many estimates from weak gravitational lensing, galaxy clusters, and redshift-space distortions. Individually these tensions are only significant at the ~$2\sigma$ level, but they arise in multiple data sets with independent statistics and distinct sources of systematic uncertainty. The tensions are stronger with Planck CMB data than they were with WMAP because of the smaller statistical errors and the higher central value of $\Omega_m.$ With the improved measurements expected from the next generation of data sets, these tensions may diminish, or they may sharpen in a way that points towards a more complete physical understanding of cosmic acceleration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View