Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells

Abstract

Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca+2] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca+2] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca+2] and endoplasmic reticulum [Ca+2]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP3Rs and RyRs and substantially reduced by strong [Ca2+] buffering. Inhibition of IP3Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2′. CICR induced by different doses of BH3I-2′ in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca+2] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View