Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Paleomagnetism and Ar-40/Ar-39 ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica

Abstract

Maps of virtual geomagnetic poles derived from international geomagnetic reference field models show large lobes with significant departures from the spin axis. These lobes persist in field models for the last few millenia. The anomalous lobes are associated with observation sites at extreme southerly latitudes. To determine whether these features persist for millions of years, paleomagnetic vector data from the continent of Antarctica are essential. We present here new paleomagnetic vector data and Ar-40/Ar-39 ages from lava flows spanning the Brunhes and Matuyama Chrons from the vicinity of McMurdo Sound, Antarctica. Oriented paleomagnetic samples were collected from 50 lava flows by E. Mankinen and A. Cox in the 1965-1966 austral summer season. Preliminary data based largely on the natural remanent magnetization (NRM) directions were published by Mankinen and Cox [1988]. We have performed detailed paleomagnetic investigations of 37 sites with multiple fully oriented core samples to investigate the reliability of results from this unique sample collection. Of these, only one site fails to meet our acceptance criteria for directional data. Seven sites are reversely magnetized. The mean normal and reverse directions are antipodal. The combined mean direction has (D) over bar =12, (I) over bar=-86, alpha=4, kappa=37 and is indistinguishable from that expected from a GAD field. We obtained reproducible absolute paleointensity estimates from 15 lava flows with a mean dipole moment of 49 ZAm(2) and a standard deviation of 28 ZAm(2). Ar-40/Ar-39 age determinations were successfully carried out on samples from 18 of the flows. Our new isotopic ages and paleomagnetic polarities are consistent with the currently accepted geomagnetic reversal timescales.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View