Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Quenched law of large numbers for branching Brownian motion

Abstract

We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) Brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching Brownian motion with mild obstacles spreads less quickly than ordinary branching Brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the Poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View