Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experimentsa)

Published Web Location

https://doi.org/10.1063/1.3314336Creative Commons 'BY' version 4.0 license
Abstract

The five-dimensional finite-orbit Monte Carlo code ORBIT-RF [M. Choi, Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger, Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar, Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink, Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono, Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments. © 2010 American Institute of Physics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View