Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept

Abstract

The 2019 novel coronavirus infectious disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created an unsustainable need for molecular diagnostic testing. Molecular approaches such as reverse transcription (RT) polymerase chain reaction (PCR) offers highly sensitive and specific means to detect SARS-CoV-2 RNA, however, despite it being the accepted "gold standard", molecular platforms often require a tradeoff between speed versus throughput. Matrix assisted laser desorption ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) has been proposed as a potential solution for COVID-19 testing and finding a balance between analytical performance, speed, and throughput, without relying on impacted supply chains. Combined with machine learning (ML), this MALDI-TOF-MS approach could overcome logistical barriers encountered by current testing paradigms. We evaluated the analytical performance of an ML-enhanced MALDI-TOF-MS method for screening COVID-19. Residual nasal swab samples from adult volunteers were used for testing and compared against RT-PCR. Two optimized ML models were identified, exhibiting accuracy of 98.3%, positive percent agreement (PPA) of 100%, negative percent agreement (NPA) of 96%, and accuracy of 96.6%, PPA of 98.5%, and NPA of 94% respectively. Machine learning enhanced MALDI-TOF-MS for COVID-19 testing exhibited performance comparable to existing commercial SARS-CoV-2 tests.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View