Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems


Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8‰. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7‰, and reflected isotopic mixing from three sources: sea-salt (+21.1‰), marine biogenic emissions (+15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7‰) to relatively high (+17.8 to +19.3‰) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3‰ and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View