Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency

Abstract

The theoretical maxima of solar energy conversion efficiencies and productivities in oxygenic photosynthesis are evaluated. These are contrasted with actual measurements in a variety of photosynthetic organisms, including green microalgae, cyanobacteria, C4 and C3 plants. Minimizing, or truncating, the chlorophyll antenna size of the photosystems can improve photosynthetic solar energy conversion efficiency and productivity up to 3-fold. Generation of truncated light-harvesting chlorophyll antenna size (tla) strains, in all classes of photosynthetic organisms would help to alleviate excess absorption of sunlight and the ensuing wasteful dissipation of excitation energy, and to maximize solar-to-product energy conversion efficiency and photosynthetic productivity in high-density mass cultivations. The tla concept may find application in the commercial exploitation of microalgae and plants for the generation of biomass, biofuels, chemical feedstocks, as well as nutraceuticals and pharmaceuticals. © 2009 Elsevier Ireland Ltd. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
of 0
Current View