Critical branching processes in digital memcomputing machines
Skip to main content
eScholarship
Open Access Publications from the University of California

Critical branching processes in digital memcomputing machines

  • Author(s): Bearden, SRB
  • Sheldon, F
  • Di Ventra, M
  • et al.
Abstract

Memcomputing is a novel computing paradigm that employs time non-locality (memory) to solve combinatorial optimization problems. It can be realized in practice by means of non-linear dynamical systems whose point attractors represent the solutions of the original problem. It has been previously shown that during the solution search digital memcomputing machines go through a transient phase of avalanches (instantons) that promote dynamical long-range order. By employing mean-field arguments we predict that the distribution of the avalanche sizes follows a Borel distribution typical of critical branching processes with exponent $\tau= 3/2$. We corroborate this analysis by solving various random 3-SAT instances of the Boolean satisfiability problem. The numerical results indicate a power-law distribution with exponent $\tau = 1.51 \pm 0.02$, in very good agreement with the mean-field analysis. This indicates that memcomputing machines self-tune to a critical state in which avalanches are characterized by a branching process, and that this state persists across the majority of their evolution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View