Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Baseline OCT Measurements in the Idiopathic Intracranial Hypertension Treatment Trial, Part I: Quality Control, Comparisons, and VariabilityBaseline OCT Measurements in IIHTT, Part I

Abstract

Purpose

Optical coherence tomography (OCT) has been used to investigate papilledema in single-site, mostly retrospective studies. We investigated whether spectral-domain OCT (SD-OCT), which provides thickness and volume measurements of the optic nerve head and retina, could reliably demonstrate structural changes due to papilledema in a prospective multisite clinical trial setting.

Methods

At entry, 126 subjects in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) with mild visual field loss had optic disc and macular scans, using the Cirrus SD-OCT. Images were analyzed by using the proprietary commercial and custom 3D-segmentation algorithms to calculate retinal nerve fiber layer (RNFL), total retinal thickness (TRT), optic nerve head volume (ONHV), and retinal ganglion cell layer (GCL) thickness. We evaluated variability, with interocular comparison and correlation between results for both methods.

Results

The average RNFL thickness > 95% of normal controls in 90% of eyes and the RNFL, TRT, ONH height, and ONHV showed strong (r > 0.8) correlations for interocular comparisons. Variability for repeated testing of OCT parameters was low for both methods and intraclass correlations > 0.9 except for the proprietary GCL thickness. The proprietary algorithm-derived RNFL, TRT, and GCL thickness measurements had failure rates of 10%, 16%, and 20% for all eyes respectively, which were uncommon with 3D-segmentation-derived measurements. Only 7% of eyes had GCL thinning that was less than fifth percentile of normal age-matched control eyes by both methods.

Conclusions

Spectral-domain OCT provides reliable continuous variables and quantified assessment of structural alterations due to papilledema. (ClinicalTrials.gov number, NCT01003639.).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View