Skip to main content
Open Access Publications from the University of California

Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion.

  • Author(s): Fahsel, S
  • Pospiech, E-M
  • Zein, M
  • Hazlet, TL
  • Gratton, E
  • Winter, Roland
  • et al.

The lateral membrane organization and phase behavior of the binary lipid mixture DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) - DSPC (1,2-distearoyl-sn-glycero-3-phosphatidylcholine) without and with incorporated gramicidin D (GD) as a model biomembrane polypeptide was studied by small-angle neutron scattering, Fourier-transform infrared spectroscopy, and by two-photon excitation fluorescence microscopy on giant unilamellar vesicles. The small-angle neutron scattering method allows the detection of concentration fluctuations in the range from 1 to 200 nm. Fluorescence microscopy was used for direct visualization of the lateral lipid organization and domain shapes on a micrometer length scale including information of the lipid phase state. In the fluid-gel coexistence region of the pure binary lipid system, large-scale concentration fluctuations appear. Infrared spectral parameters were used to determine the peptide conformation adopted in the different lipid phases. The data show that the structure of the temperature-dependent lipid phases is significantly altered by the insertion of 2 to 5 mol% GD. At temperatures corresponding to the gel-fluid phase coexistence region the concentration fluctuations drastically decrease, and we observe domains in the giant unilamellar vesicles, which mainly disappear by the incorporation of 2 to 5 mol% GD. Further, the lipid matrix has the ability to modulate the conformation of the inserted polypeptide. The balance between double-helical and helical dimer structures of GD depends on the phospholipid chain length and phase state. A large hydrophobic mismatch, such as in gel phase one-component DSPC bilayers, leads to an increase in population of double-helical structures. Using an effective molecular sorting mechanism, a large hydrophobic mismatch can be avoided in the DMPC-DSPC lipid mixture, which leads to significant changes in the heterogeneous lipid structure and in polypeptide conformation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View