Skip to main content
eScholarship
Open Access Publications from the University of California

Micro-Burr Formation and Minimization Through Process Control

  • Author(s): Lee, Kiha
  • Dornfeld, David
  • et al.
Abstract

This paper presents an investigation on micro-burr formation in machining. Micro-cutting is compared with conventional cutting in terms of cutting process characteristic and cutting conditions. In this paper, tungsten–carbide micro-mills were used to cut holes (in a drilling-like process) to investigate top burr formation. The size and type of burr created in stainless steel 304 are studied as a function of machining variables, which are feed, cutting speed and cutting edge radius, to help illuminate the micro-burr formation mechanisms. A series of experiments was conducted to study tool life as a function of cutting conditions. Tool life, here, is defined as the number of holes created before a significant increase in burr height. Based on experimental results, contour charts for predicting burr formation as well as tool life are developed to minimize burr formation and to improve tool life. The model, which includes the effect of feed, cutting speed, and the interaction between the two, predicted the burr height and tool life values with an accuracy of about±15%.

Main Content
Current View