## Categorified symplectic geometry and the string Lie 2-algebra

## Abstract

Multisymplectic geometry is a generalization of symplectic geometry suitable for n-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate (n + 1)-form. The case n = 2 is relevant to string theory: we call this '2-plectic geometry.' Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, the observables associated to a 2-plectic manifold form a 'Lie 2-algebra,' which is a categorified version of a Lie algebra. Any compact simple Lie group G has a canonical 2-plectic structure, so it is natural to wonder what Lie 2-algebra this example yields. This Lie 2-algebra is infinite-dimensional, but we show here that the sub-Lie-2-algebra of left-invariant observables is finite-dimensional, and isomorphic to the already known 'string Lie 2-algebra' associated to G. So, categorified symplectic geometry gives a geometric construction of the string Lie 2-algebra. © 2010, John C. Baez and Christopher L. Rogers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.