Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Generative modeling for label-free glomerular modeling and classification.

Abstract

Generative modeling using GANs has gained traction in machine learning literature, as training does not require labeled datasets. This is perfect for applications in biological datasets, where large labeled datasets are often difficult and expensive to acquire. However, generative models offer no easy way to encode real images into feature-sets, something that is desirable for network explainability and may yield potentially informative image features. For this reason, we test a VAE-GAN architecture for label-free modeling of glomerular structural features. We show that this network can generate realistic looking synthetic images, and be used to interpolate between images. To prove the biological relevance of the network encodings, we classify small-labeled sets of encoded glomeruli by biopsy Tervaert class and for the presence of sclerosis, obtaining a Cohen's kappa values of 0.87 and 0.78 respectfully.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View