Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

An exploration of counterfeit medicine surveillance strategies guided by geospatial analysis: lessons learned from counterfeit Avastin detection in the US drug supply chain.



To explore healthcare policy and system improvements that would more proactively respond to future penetration of counterfeit cancer medications in the USA drug supply chain using geospatial analysis.


A statistical and geospatial analysis of areas that received notices from the Food and Drug Administration (FDA) about the possibility of counterfeit Avastin penetrating the US drug supply chain. Data from FDA warning notices were compared to data from 44 demographic variables available from the US Census Bureau via correlation, means testing and geospatial visualisation. Results were interpreted in light of existing literature in order to recommend improvements to surveillance of counterfeit medicines.


This study analysed 791 distinct healthcare provider addresses that received FDA warning notices across 30,431 zip codes in the USA.


Statistical outputs were Pearson's correlation coefficients and t values. Geospatial outputs were cartographic visualisations. These data were used to generate the overarching study outcome, which was a recommendation for a strategy for drug safety surveillance congruent with existing literature on counterfeit medication.


Zip codes with greater numbers of individuals age 65+ and greater numbers of ethnic white individuals were most correlated with receipt of a counterfeit Avastin notice. Geospatial visualisations designed in conjunction with statistical analysis of demographic variables appeared more capable of suggesting areas and populations that may be at risk for undetected counterfeit Avastin penetration.


This study suggests that dual incorporation of statistical and geospatial analysis in surveillance of counterfeit medicine may be helpful in guiding efforts to prevent, detect and visualise counterfeit medicines penetrations in the US drug supply chain and other settings. Importantly, the information generated by these analyses could be utilised to identify at-risk populations associated with demographic characteristics. Stakeholders should explore these results as another tool to improve on counterfeit medicine surveillance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View