Skip to main content
eScholarship
Open Access Publications from the University of California

Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine

  • Author(s): Fu, J
  • Astarita, G
  • Gaetani, S
  • Kim, J
  • Cravatt, BF
  • Mackie, K
  • Piomelli, D
  • et al.
Abstract

Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-α. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.g. liver, brain, heart, plasma). Feeding also increases the levels of other unsaturated fatty acid ethanolamides (FAEs) (e.g. linoleoylethanolamide) without affecting those of saturated FAEs (e.g. palmitoylethanolamide). Feeding-induced OEA mobilization is accompanied by enhanced accumulation of OEA-generating N-acylphosphatidylethanolamines (NAPEs) increased activity and expression of the OEA-synthesizing enzyme NAPE-phospholipase D, and decreased activity and expression of the OEA-degrading enzyme fatty acid amide hydrolase. Immunostaining studies revealed that NAPE-phospholipase D and fatty acid amide hydrolase are expressed in intestinal enterocytes and lamina propria cells. Collectively, these results indicate that nutrient availability controls OEA mobilization in the mucosa of the proximal intestine through a concerted regulation of OEA biosynthesis and degradation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View