- Main
Elasticity in drift-wave-zonal-flow turbulence.
- Author(s): Guo, ZB
- Diamond, PH
- Kosuga, Y
- Gürcan, ÖD
- et al.
Published Web Location
https://doi.org/10.1103/physreve.89.041101Abstract
We present a theory of turbulent elasticity, a property of drift-wave-zonal-flow (DW-ZF) turbulence, which follows from the time delay in the response of DWs to ZF shears. An emergent dimensionless parameter |〈v〉'|/Δωk is found to be a measure of the degree of Fickian flux-gradient relation breaking, where |〈v〉'| is the ZF shearing rate and Δωk is the turbulence decorrelation rate. For |〈v〉'|/Δωk>1, we show that the ZF evolution equation is converted from a diffusion equation, usually assumed, to a telegraph equation, i.e., the turbulent momentum transport changes from a diffusive process to wavelike propagation. This scenario corresponds to a state very close to the marginal instability of the DW-ZF system, e.g., the Dimits shift regime. The frequency of the ZF wave is ΩZF=±γd1/2γmodu1/2, where γd is the ZF friction coefficient and γmodu is the net ZF growth rate for the case of the Fickian flux-gradient relation. This insight provides a natural framework for understanding temporally periodic ZF structures in the Dimits shift regime and in the transition from low confined mode to high confined mode in confined plasmas.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.