Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Genome‐wide association study of a nicotine metabolism biomarker in African American smokers: impact of chromosome 19 genetic influences

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807179/
No data is associated with this publication.
Creative Commons 'BY-NC-SA' version 4.0 license
Abstract

Background and aims

The activity of CYP2A6, the major nicotine-inactivating enzyme, is measurable in smokers using the nicotine metabolite ratio (NMR; 3'hydroxycotinine/cotinine). Due to its role in nicotine clearance, the NMR is associated with smoking behaviours and response to pharmacotherapies. The NMR is highly heritable (~80%), and on average lower in African Americans (AA) versus whites. We previously identified several reduce and loss-of-function CYP2A6 variants common in individuals of African descent. Our current aim was to identify novel genetic influences on the NMR in AA smokers using genome-wide approaches.

Design

Genome-wide association study (GWAS).

Setting

Multiple sites within Canada and the United States.

Participants

AA smokers from two clinical trials: Pharmacogenetics of Nicotine Addiction Treatment (PNAT)-2 (NCT01314001; n = 504) and Kick-it-at-Swope (KIS)-3 (NCT00666978; n = 450).

Measurements

Genome-wide SNP genotyping, the NMR (phenotype) and population substructure and NMR covariates.

Findings

Meta-analysis revealed three independent chromosome 19 signals (rs12459249, rs111645190 and rs185430475) associated with the NMR. The top overall hit, rs12459249 (P = 1.47e-39; beta = 0.59 per C (versus T) allele, SE = 0.045), located ~9.5 kb 3' of CYP2A6, remained genome-wide significant after controlling for the common (~10% in AA) non-functional CYP2A6*17 allele. In contrast, rs111645190 and rs185430475 were not genome-wide significant when controlling for CYP2A6*17. In total, 96 signals associated with the NMR were identified; many were not found in prior NMR GWASs in individuals of European descent. The top hits were also associated with the NMR in a third cohort of AA (KIS2; n = 480). None of the hits were in UGT or OCT2 genes.

Conclusions

Three independent chromosome 19 signals account for ~20% of the variability in the nicotine metabolite ratio in African American smokers. The hits identified may contribute to inter-ethnic variability in nicotine metabolism, smoking behaviours and tobacco-related disease risk.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item