Skip to main content
Download PDF
- Main
Combining numeric and symbolic learning techniques
Abstract
Incremental learning from examples in a noisy domain is a difficult problem in Machine Learning. In this paper we divide the task into two subproblems and present a combination of numeric and symbolic approaches that yields robust learning of boolean characterizations. Our method has been implemented in a computer program, and we plot its empirical learning performance in the presence of varying amounts of noise.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%