- Main
Subsampled Rényi Differential Privacy and Analytical Moments Accountant
Published Web Location
https://doi.org/10.29012/jpc.723Abstract
We study the problem of subsampling in differential privacy (DP), a question that is the centerpiece behind many successful differentially private machine learning algorithms. Specifically, we provide a tight upper bound on the Renyi Differential Privacy (RDP) [Mironov, 2017] parameters for algorithms that: (1) subsample the dataset, and then (2) apply a randomized mechanism M to the subsample, in terms of the RDP parameters of M and the subsampling probability parameter.Our results generalize the moments accounting technique, developed by [Abadi et al. 2016] for the Gaussian mechanism, to any subsampled RDP mechanism.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-