Communication-Avoiding and Memory-Constrained Sparse Matrix-Matrix Multiplication at Extreme Scale
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Communication-Avoiding and Memory-Constrained Sparse Matrix-Matrix Multiplication at Extreme Scale

Abstract

Sparse matrix-matrix multiplication (SpGEMM) is a widely used kernel in various graph, scientific computing and machine learning algorithms. In this paper, we consider SpGEMMs performed on hundreds of thousands of processors generating trillions of nonzeros in the output matrix. Distributed SpGEMM at this extreme scale faces two key challenges: (1) high communication cost and (2) inadequate memory to generate the output. We address these challenges with an integrated communication-avoiding and memory-constrained SpGEMM algorithm that scales to 262,144 cores (more than 1 million hardware threads) and can multiply sparse matrices of any size as long as inputs and a fraction of output fit in the aggregated memory. As we go from 16,384 cores to 262,144 cores on a Cray XC40 supercomputer, the new SpGEMM algorithm runs 10x faster when multiplying large-scale protein-similarity matrices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View