- Main
Axonal transport of macromolecules I. Protein migration in the central nervous system
Abstract
The avian visual system has been used to study the transport of proteins and their precursors along the optic tract. Various labeled compounds were injected into a single eye of new hatched chicks. The radioactivity of components in the optic lobe that was contralateral to, and innervated by, the injected eye was compared to radioactivity in the ipsilateral lobe, not innervated by the treated eye. Proteins migrating from the ganglion cells of the retina to the optic tectum seemed to be relatively stable and may be rich in proline and glycine. Microtubular protein migrated at a rate similar to nonmicrotubule soluble protein, and slower than particulate protein. With the exception of γ-aminobutyric acid, transport of free amino acids occurred to only a minor extent. Following monocular injection of tritiated fucose, a rapid asymmetry in the specific activities of protein from contralateral and ipsilateral lobes, was established. Thus the more rapidly migrating proteins may be attached to glycosidic residues. The carbohydrate moeity of these glycoproteins is attached in the nerve cell body, prior to their axonal transport to the optic tectum. There was no evidence for transneuronal transfer of protein as in no case was a differential in specific activity observed in labeled protein from paired cerebral hemispheres. © 1971 Springer-Verlag.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-