Skip to main content
eScholarship
Open Access Publications from the University of California

Lower and Upper Bounds for a Symmetric Multiple Depot, Multiple Travelling Salesman Problem

Abstract

This paper extends the well known Held-Karp's lower bound available for a single Travelling Salesman Problem to the multiple depot case. The LP-relaxation of a symmetric multiple vehicle, multiple depot problem is shown to be lower bounded by an infinite family of bounds. Each lower bound can be computed in a tractable way using a matroid intersection algorithm. When the costs of travelling between any two locations satisfy triangle inequality, it is shown that there exists a 2-approximation algorithm for solving the multiple depot, multiple TSP. These results are useful in solving the following path planning problem of UAVs: Given a set of UAVs, their starting locations, a set of final UAV locations, a set of destinations to visit and the cost of travelling between any two locations, find a path for each UAV such that each destination is visited once by any one UAV and the total cost travelled by all the UAVs is minimum.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View