Zero-Field J-spectroscopy of Quadrupolar Nuclei
Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Zero-Field J-spectroscopy of Quadrupolar Nuclei


Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is a version of NMR that allows studying molecules and their transformations in the regime dominated by intrinsic spin-spin interactions. While spin dynamics at zero magnetic field can be probed indirectly, J-spectra can also be measured at zero field by using non-inductive sensors, for example, optically-pumped magnetometers (OPMs). A J-spectrum can be detected when a molecule contains at least two different types of magnetic nuclei (i.e., nuclei with different gyromagnetic ratios) that are coupled via J-coupling. Up to date, no pure J-spectra of molecules featuring the coupling to quadrupolar nuclei were reported. Here we show that zero-field J-spectra can be collected from molecules containing quadrupolar nuclei with I = 1 and demonstrate this for solutions containing various isotopologues of ammonium cations. Lower ZULF NMR signals are observed for molecules containing larger numbers of deuterons compared to protons; this is attributed to less overall magnetization and not to the scalar relaxation of the second kind. We analyze the energy structure and allowed transitions for the studied molecular cations in detail using perturbation theory and demonstrate that in the studied systems, different lines in J-spectra have different dependencies on the magnetic pulse length allowing for unique on-demand zero-field spectral editing. Precise values for the 15N-1H, 14N-1H, and D-1H coupling constants are extracted from the spectra and the difference in the reduced coupling constants is explained by the secondary isotope effect. Simple symmetric cations such as ammonium do not require expensive isotopic labeling for the observation of J-spectra and, thus, may expand applicability of ZULF NMR spectroscopy in biomedicine and energy storage.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View