Testability of high-dimensional linear models with non-sparse structures
Skip to main content
eScholarship
Open Access Publications from the University of California

Testability of high-dimensional linear models with non-sparse structures

  • Author(s): Bradic, Jelena
  • Fan, Jianqing
  • Zhu, Yinchu
  • et al.
Abstract

Understanding statistical inference under possibly non-sparse high-dimensional models has gained much interest recently. For a given component of the regression coefficient, we show that the difficulty of the problem depends on the sparsity of the corresponding row of the precision matrix of the covariates, not the sparsity of the regression coefficients. We develop new concepts of uniform and essentially uniform non-testability that allow the study of limitations of tests across a broad set of alternatives. Uniform non-testability identifies a collection of alternatives such that the power of any test, against any alternative in the group, is asymptotically at most equal to the nominal size. Implications of the new constructions include new minimax testability results that, in sharp contrast to the current results, do not depend on the sparsity of the regression parameters. We identify new tradeoffs between testability and feature correlation. In particular, we show that, in models with weak feature correlations, minimax lower bound can be attained by a test whose power has the $\sqrt{n}$ rate, regardless of the size of the model sparsity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View