Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Deep Reinforcement Learning for DER Cyber-Attack Mitigation


The increasing penetration of DER with smart-inverter functionality is set to transform the electrical distribution network from a passive system, with fixed injection/consumption, to an active network with hundreds of distributed controllers dynamically modulating their operating setpoints as a function of system conditions. This transition is being achieved through standardization of functionality through grid codes and/or international standards. DER, however, are unique in that they are typically neither owned nor operated by distribution utilities and, therefore, represent a new emerging attack vector for cyber-physical attacks. Within this work we consider deep reinforcement learning as a tool to learn the optimal parameters for the control logic of a set of uncompromised DER units to actively mitigate the effects of a cyber-attack on a subset of network DER.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View