Skip to main content
eScholarship
Open Access Publications from the University of California

Inhibition of phospholipase A2 by "lipocortins" and calpactins. An effect of binding to substrate phospholipids.

  • Author(s): Davidson, FF
  • Dennis, EA
  • Powell, M
  • Glenney, JR
  • et al.
Abstract

The "lipocortins" are a group of proteins that have been reported to inhibit phospholipase A2 by direct interaction with enzyme. Two proteins which have been identified as lipocortin on the basis of inhibition of phospholipase A2 activity have recently been cloned and sequenced. These have been shown to be identical to the calpactins, which are membrane cytoskeletal proteins serving as major substrates of the tyrosine protein kinases. We have now found that two forms of calpactin (I and II) inhibit porcine pancreatic phospholipase A2 in an assay using Escherichia coli cells or extracted phospholipid vesicles as substrate, but only when the substrate concentration is very low. Both calpactins, as well as another, 73-kDa inhibitory protein, were found to bind purified phospholipids and E. coli cell membranes directly. Kinetic studies show that the inhibition of phospholipase A2 by calpactin can be overcome by high phospholipid substrate concentrations, whether E. coli cells or isolated phospholipid vesicles are used. For example, in the presence of 5 X 10(-10) M phospholipase A2 and 1 X 10(-7) M calpactin, the inhibition decreases from 100 to 0% as phospholipid in vesicles is raised from 2 to 8 microM. The evidence reported here strongly suggests that in vitro inhibition of phospholipase A2 by lipocortin is due to sequestering of the phospholipid substrate by the inhibitor protein, rather than a direct interaction with the phospholipase. These results raise questions about the physiological significance of the inhibition of phospholipases by calpactins.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View