Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Non-Consumptive Predator Effects Shape Honey Bee Foraging and Recruitment Dancing


Predators can reduce bee pollination and plant fitness through successful predation and non-consumptive effects. In honey bees, evidence of predation or a direct attack can decrease recruitment dancing and thereby magnify the effects of individual predation attempts at a colony level. However, actual predation attempts and successes are relatively rare. It was not known if a far more common event, just detection of a predator, could inhibit recruitment. We began by testing honey bees' avoidance of the praying mantis (Tenodera sinensis). Larger predators (later mantis instars, ≥4.5 cm in body length) elicited significantly more avoidance (1.3 fold) than smaller mantis instars. Larger instars also attempted to capture honey bees significantly more often than did smaller instars. Foragers could detect and avoid mantises based upon mantis odor (74% of bees avoided an odor extract) or visual appearance (67% avoided a mantis model). Finally, foragers decreased recruitment dancing by 1.8 fold for a food source with a live adult mantis, even when they were not attacked. This reduction in recruitment dancing, elicited by predator presence alone, expands our understanding of predator non-consumptive effects and of cascading ecosystem effects for plants served by an important generalist pollinator.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View