Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Photo-z outlier self-calibration in weak lensing surveys


Calibrating photometric redshift errors in weak lensing surveys with external data is extremely challenging. We show that both Gaussian and outlier photo-z parameters can be self-calibrated from the data alone. This comes at no cost for the neutrino masses, curvature and dark energy equation of state w0, but with a 65% degradation when both w0 and wa are varied. We perform a realistic forecast for the Vera Rubin Observatory (VRO) Legacy Survey of Space and Time (LSST) 3× 2 analysis, combining cosmic shear, projected galaxy clustering and galaxy - galaxy lensing. We confirm the importance of marginalizing over photo-z outliers. We examine a subset of internal cross-correlations, dubbed "null correlations", which are usually ignored in 3× 2 analyses. Despite contributing only ∼ 10% of the total signal-to-noise, these null correlations improve the constraints on photo-z parameters by up to an order of magnitude. Using the same galaxy sample as sources and lenses dramatically improves the photo-z uncertainties too. Together, these methods add robustness to any claim of detected new Physics, and reduce the statistical errors on cosmology by 15% and 10% respectively. Finally, including CMB lensing from an experiment like Simons Observatory or CMB-S4 improves the cosmological and photo-z posterior constraints by about 10%, and further improves the robustness to systematics. To give intuition on the Fisher forecasts, we examine in detail several toy models that explain the origin of the photo-z self-calibration. Our Fisher code LaSSI (Large-Scale Structure Information), which includes the effect of Gaussian and outlier photo-z, shear multiplicative bias, linear galaxy bias, and extensions to LCDM, is publicly available at \href{}{}.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View