Skip to main content
eScholarship
Open Access Publications from the University of California

Segmented Model Selection in Quantile Regression Using the Minimum Description Length Principle

  • Author(s): Aue, A
  • Cheung, RCY
  • Lee, TCM
  • Zhong, M
  • et al.
Abstract

© 2014 American Statistical Association. This article proposes new model-fitting techniques for quantiles of an observed data sequence, including methods for data segmentation and variable selection. The main contribution, however, is in providing a means to perform these two tasks simultaneously. This is achieved by matching the data with the best-fitting piecewise quantile regression model, where the fit is determined by a penalization derived from the minimum description length principle. The resulting optimization problem is solved with the use of genetic algorithms. The proposed, fully automatic procedures are, unlike traditional break point procedures, not based on repeated hypothesis tests, and do not require, unlike most variable selection procedures, the specification of a tuning parameter. Theoretical large-sample properties are derived. Empirical comparisons with existing break point and variable selection methods for quantiles indicate that the new procedures work well in practice.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View