Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Scene-Graph Augmented Data-Driven Risk Assessment of Autonomous Vehicle Decisions


There is considerable evidence that evaluating the subjective risk level of driving decisions can improve the safety of Autonomous Driving Systems (ADS) in both typical and complex driving scenarios. In this paper, we propose a novel data-driven approach that uses scene-graphs as intermediate representations for modeling the subjective risk of driving maneuvers. Our approach includes a Multi-Relation Graph Convolution Network, a Long-Short Term Memory Network, and attention layers. To train our model, we formulate subjective risk assessment as a supervised scene classification problem. We evaluate our model on both synthetic lane-changing datasets and real-driving datasets with various driving maneuvers. We show that our approach achieves a higher classification accuracy than the state-of-the-art approach on both large (96.4% vs. 91.2%) and small (91.8% vs. 71.2%) lane-changing synthesized datasets, illustrating that our approach can learn effectively even from small datasets. We also show that our model trained on a lane-changing synthesized dataset achieves an average accuracy of 87.8% when tested on a real-driving lane-changing dataset. In comparison, the state-of-the-art model trained on the same synthesized dataset only achieved 70.3% accuracy when tested on the real-driving dataset, showing that our approach can transfer knowledge more effectively. Moreover, we demonstrate that the addition of spatial and temporal attention layers improves our model's performance and explainability. Finally, our results illustrate that our model can assess the risk of various driving maneuvers more accurately than the state-of-the-art model (86.5% vs. 58.4%, respectively).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View