Skip to main content
eScholarship
Open Access Publications from the University of California

Skeletal muscle fibrosis and stiffness increase after rotator cuff tendon injury and neuromuscular compromise in a rat model

  • Author(s): Sato, EJ
  • Killian, ML
  • Choi, AJ
  • Lin, E
  • Esparza, MC
  • Galatz, LM
  • Thomopoulos, S
  • Ward, SR
  • et al.

Published Web Location

https://doi.org/10.1002/jor.22646
Abstract

Rotator cuff tears can cause irreversible changes (e.g., fibrosis) to the structure and function of the injured muscle(s). Fibrosis leads to increased muscle stiffness resulting in increased tension at the rotator cuff repair site. This tension influences repairability and healing potential in the clinical setting. However, the micro- and meso-scale structural and molecular sources of these whole-muscle mechanical changes are poorly understood. Here, single muscle fiber and fiber bundle passive mechanical testing was performed on rat supraspinatus and infraspinatus muscles with experimentally induced massive rotator cuff tears (Tenotomy) as well as massive tears with chemical denervation (Tenotomy + BTX) at 8 and 16 weeks post-injury. Titin molecular weight, collagen content, and myosin heavy chain profiles were measured and correlated with mechanical variables. Single fiber stiffness was not different between controls and experimental groups. However, fiber bundle stiffness was significantly increased at 8 weeks in the Tenotomy + BTX group compared to Tenotomy or control groups. Many of the changes were resolved by 16 weeks. Only fiber bundle passive mechanics was weakly correlated with collagen content. These data suggest that tendon injury with concomitant neuromuscular compromise results in extra-cellular matrix production and increases in stiffness of the muscle, potentially complicating subsequent attempts for surgical repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1111-1116, 2014. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View