Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization
Skip to main content
eScholarship
Open Access Publications from the University of California

Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization

  • Author(s): Banks, J
  • Moore, C
  • Vershynin, R
  • Verzelen, N
  • Xu, J
  • IEEE
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

We study the problem of detecting a structured, low-rank signal matrix corrupted with additive Gaussian noise. This includes clustering in a Gaussian mixture model, sparse PCA, and submatrix localization. Each of these problems is conjectured to exhibit a sharp information-theoretic threshold, below which the signal is too weak for any algorithm to detect. We derive upper and lower bounds on these thresholds by applying the first and second moment methods to the likelihood ratio between these "planted models" and null models where the signal matrix is zero. Our bounds differ by at most a factor of root two when the rank is large (in the clustering and submatrix localization problems, when the number of clusters or blocks is large) or the signal matrix is very sparse. Moreover, our upper bounds show that for each of these problems there is a significant regime where reliable detection is information- theoretically possible but where known algorithms such as PCA fail completely, since the spectrum of the observed matrix is uninformative. This regime is analogous to the conjectured 'hard but detectable' regime for community detection in sparse graphs.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View