Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Stochastic Yield Analysis of Rare Failure Events in High-Dimensional Variation Space

Abstract

As semiconductor industry kept shrinking the feature size to nanometer scale, circuit reliability has become an area of growing concern due to the uncertainty introduced by process variations. For highly-replicated standard cells, the failure event for each individual component must be extremely rare in order to maintain sufficiently high yield rate. Existing yield analysis approaches works fine at low dimension, but less effective either when there are a large amount of circuit parameters, or when the failure samples are distributed in multiple regions. In this thesis, four novel high sigma analysis approaches have been proposed.

First, we propose an adaptive importance sampling (AIS) algorithm. AIS has several iterations of sampling region adjustments, while existing methods pre-decide a static sampling distribution. At each iteration, AIS generates samples from current proposed distribution. Next, AIS carefully assigns weight to each sample based on its tilted occurrence probability between failure region and current failure region distribution. Then we design two adaptive frameworks based on Resampling and population Metropolis-Hastings (MH) to iteratively search for failure regions.

Second, we develop an Adaptive Clustering and Sampling (ACS) method to estimate the failure rate of high-dimensional and multi-failure-region circuit cases. The basic idea of the algorithm is to cluster failure samples and build global sampling distribution at each iteration. Specifically, in clustering step, we propose a multi-cone clustering method, which partitions the parametric space and clusters failure samples. Then global sampling distribution is constructed from a set of weighted Gaussian distributions. Next, we calculate importance weight for each sample based on the discrepancy between sampling distribution and target distribution. Failure probability is updated at the end of each iteration. This clustering and sampling procedure proceeds iteratively until all the failure regions are covered.

Moreover, two meta-model based approaches are proposed for high sigma analysis. The Low-Rank Tensor Approximation (LRTA) formulate the meta-model in tensor space by representing a multi-way tensor into a finite sum of rank-one tensor. The polynomial degree of our LRTA model grows linearly with circuit dimension, which makes it especially promising for high-dimensional circuit problems. Then we solve our LRTA model efficiently with a robust greedy algorithm, and calibrate iteratively with an adaptive sampling method. The meta-model based importance sampling (MIS) method utilizes Gaussian Process meta-model to construct quasi-optimal importance sampling distribution, and performs Markov Chain Monte Carlo (MCMC) simulation to generate new samples from the proposed distribution. By updating our global Importance Sampling estimator in an iterated framework, MIS leads to better efficiency and higher accuracy than traditional importance sampling methods. Experiment results validate that the proposed approaches are 3 orders faster than Monte Carlo, and more accurate than both academia solutions such as importance sampling and classification based methods, and industrial solutions such as mixture IS used by Intel.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View