- Main
Voltage Mining for (De)lithiation-Stabilized Cathodes and a Machine Learning Model for Li-Ion Cathode Voltage.
Abstract
Advances in lithium-metal anodes have inspired interest in discovery of Li-free cathodes, most of which are natively found in their charged state. This is in contrast to today's commercial lithium-ion battery cathodes, which are more stable in their discharged state. In this study, we combine calculated cathode voltage information from both categories of cathode materials, covering 5577 and 2423 total unique structure pairs, respectively. The resulting voltage distributions with respect to the redox pairs and anion types for both classes of compounds emphasize design principles for high-voltage cathodes, which favor later Period 4 transition metals in their higher oxidation states and more electronegative anions like fluorine or polyanion groups. Generally, cathodes that are found in their charged, delithiated state are shown to exhibit voltages lower than those that are most stable in their lithiated state, in agreement with thermodynamic expectations. Deviations from this trend are found to originate from different anion distributions between redox pairs. In addition, a machine learning model for voltage prediction based on chemical formulas is trained and shows state-of-the-art performance when compared to two established composition-based ML models for material properties predictions, Roost and CrabNet.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-