Combinatorial Markov chains on linear extensions
Skip to main content
eScholarship
Open Access Publications from the University of California

Combinatorial Markov chains on linear extensions

  • Author(s): Ayyer, Arvind
  • Klee, Steven
  • Schilling, Anne
  • et al.

Published Web Location

http://arxiv.org/abs/1205.7074
No data is associated with this publication.
Abstract

We consider generalizations of Schuetzenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the uniform distribution, whereas the weights of the stationary state of the other has a nice product formula. This generalizes results by Hendricks on the Tsetlin library, which corresponds to the case when the poset is the anti-chain and hence L=S_n is the full symmetric group. We also provide explicit eigenvalues of the transition matrix in general when the poset is a rooted forest. This is shown by proving that the associated monoid is R-trivial and then using Steinberg's extension of Brown's theory for Markov chains on left regular bands to R-trivial monoids.

Item not freely available? Link broken?
Report a problem accessing this item