Skip to main content
eScholarship
Open Access Publications from the University of California

Full Scale Cyclic Testing of Foundation Support Systems for Highway Bridges. Part II: Abutment Backwalls

Abstract

This research involved analysis and field testing of numerous foundation support components for highway bridges. Two classes of components were tested - cast-in-drilled-hole (CIDH) reinforced concrete piles (drilled shafts) and an abutment backwall. The emphasis of this document (Part II of the full report) is abutment backwall elements.

The backwall test specimen was backfilled to a height of 5.5 up from the base of the wall with well-compacted silty sand backfill material (SE 30). The wall is displaced perpendicular to its longitudinal axis. Wing walls are constructed with low-friction interfaces to simulate 2D conditions. The backfill extends below the base of the wall to ensure that the failure surface occurs entirely within the sand backfill soil, which was confirmed following testing. The specimen was constructed and tested under boundary conditions in which the wall was displaced laterally into the backfill and not allowed to displace vertically.

A maximum passive capacity of 497 kips was attained at a wall displacement of about 2.0 in, which corresponds to a passive earth pressure coefficient Kp of 16.3. Strain softening occurs following the peak resistance, and a residual resistance of approximately 460 kips is achieved for displacements > 3.0 inch. The equivalent residual passive earth pressure coefficient is Kp = 15.1 and the equivalent uniform passive pressure at residual is approximately 5.1 ksf, which nearly matches the value in the 2004 Seismic Design Criteria of 5.0 ksf. The average abutment stiffness K50 was defined as a secant stiffness through the origin and the point of 50% of the ultimate passive force. For an abutment wall with a backfill height H of 5.5 ft, this stiffness was found to be K50 = 50 kip/in per foot of wall. The load-deflection behavior of the wall-backfill system is reasonably well described by a hyperbolic curve.

The passive pressure resultant is under predicted using classical Rankine or Coulomb earth pressure theories. Good estimates of capacity are obtained using the log-spiral formulation and the method-of-slices. The method-of-slices approach is implemented with a log-spiral hyperbolic method of evaluating backbone curves that provides a good match to the data.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View