Skip to main content
eScholarship
Open Access Publications from the University of California

Sources and Characteristics of Summertime Organic Aerosol in the Colorado Front Range: Perspective from Measurements and WRF-Chem Modeling

  • Author(s): Bahreini, Roya
  • Ahmadov, Ravan
  • McKeen, Stu A
  • Vu, Kennedy T
  • Dingle, Justin H
  • Apel, Eric C
  • Blake, Donald R
  • Blake, Nicola
  • Campos, Teresa L
  • Cantrell, Chris
  • Flocke, Frank
  • Fried, Alan
  • Gillman, Jessica B
  • Hills, Alan J
  • Hornbrook, Rebecca S
  • Huey, Greg
  • Kaser, Lisa
  • Lerner, Brian M
  • Mauldin, Roy L
  • Meinardi, Simone
  • Montzka, Denise D
  • Richter, Dirk
  • Schroeder, Jason R
  • Stell, Meghan
  • Tanner, David
  • Walgea, James
  • Weibring, Peter
  • Weinheimer, Andrew
  • et al.
Abstract

Abstract. Evolution of organic aerosol (OA) and their precursors in the boundary layer of Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ, July–August 2014) was analyzed by in-situ measurements and chemical transport modeling. Measurements indicated significant production of secondary OA (SOA), with enhancement ratio of OA with respect to carbon monoxide (CO) reaching 0.068 ± 0.004 μg m−3 ppbv−1. At background mixing ratios of CO, up to ~ 2 μg m−3 background OA was observed, suggesting significant non-combustion contribution to OA in the Front Range. The mean concentration of OA in plumes with a high influence of oil and natural gas (O&G) emissions was ~ 40 % higher than in urban-influenced plumes. Positive matrix factorization confirmed a dominant contribution of secondary, oxygenated OA (OOA) in the boundary layer instead of fresh, hydrocarbon-like OA (HOA). Combinations of primary OA (POA) volatility assumptions, aging of semi-volatile species, and different emission estimates from the O&G sector were used in the Weather Research and Forecasting model, coupled with Chemistry (WRF-Chem) simulation scenarios. The assumption of semi-volatile POA resulted in greater than a factor of 10 lower POA concentrations compared to PMF-resolved HOA. Including a top-down modified O&G emissions resulted in substantially better agreements in modeled ethane, toluene, hydroxyl radical, and ozone compared to measurements in the high O&G-influenced plumes. By including emissions from the O&G sector using the top-down approach, it was estimated that the O&G sector contributed to < 5 % of total OA, but up to 38 % of anthropogenic SOA in the region. The best agreement between the measured and simulated median OA was achieved by limiting the extent of biogenic hydrocarbon aging and consequently biogenic SOA (bSOA) production. Despite a lower production of bSOA in this scenario, contribution of bSOA to total SOA remained high at 40–54 %. Future studies aiming at a better emissions characterization of POA and intermediate volatility organic compounds (IVOCs) from the O&G sector are valuable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View