- Main
X-ray Crystallographic Structure of an Artificial β-Sheet Dimer
Published Web Location
https://doi.org/10.1021/ja103438wAbstract
This paper describes the X-ray crystallographic structure of a designed cyclic beta-sheet peptide that forms a well-defined hydrogen-bonded dimer that mimics beta-sheet dimers formed by proteins. The 54-membered ring macrocyclic peptide (1a) contains molecular template and turn units that induce beta-sheet structure in a heptapeptide strand that forms the dimerization interface. The X-ray crystallographic structure reveals the structures of the two "Hao" amino acids that help template the beta-sheet structure and the two delta-linked ornithine turn units that link the Hao-containing template to the heptapeptide beta-strand. The Hao amino acids adopt a conformation that resembles a tripeptide in a beta-strand conformation, with one edge of the Hao unit presenting an alternating array of hydrogen-bond donor and acceptor groups in the same pattern as that of a tripeptide beta-strand. The delta-linked ornithines adopt a conformation that resembles a hydrogen-bonded beta-turn, in which the ornithine takes the place of the i+1 and i+2 residues. The dimers formed by macrocyclic beta-sheet 1a resemble the dimers of many proteins, such as defensin HNP-3, the lambda-Cro repressor, interleukin 8, and the ribonuclease H domain of HIV-1 reverse transcriptase. The dimers of 1a self-assemble in the solid state into a barrel-shaped trimer of dimers in which the three dimers are arranged in a triangular fashion. Molecular modeling in which one of the three dimers is removed and the remaining two dimers are aligned face-to-face provides a model of the dimers of dimers of closely related macrocyclic beta-sheet peptides that were observed in solution.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-