Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Impact of hygrothermal aging on rotational behavior of web-flange junctions of structural pultruded composite members for bridge applications

  • Author(s): Haohui Xin
  • Mosallam, AS
  • Liu, Y
  • et al.
Abstract

his paper presents the results of the second part of a multi-phase study focused on hygrothermal behavior of pultruded fiber reinforced polymer (PFRP) web-flange junction for bridge applications. The information reported herein focuses on hygrothermal effect on the rotational stiffness and strength of web/flange junctions (WFJs) of typical pultruded profiles commonly used in general construction applications and in bridge decks in particular. Experimental results extracted from a total of twenty-seven as-built (unexposed) and seventy-six pultruded WFJs specimens exposed to fresh water and artificial seawater environments at temperatures of 40℃, 60℃and 80℃. The study evaluated the rotational characteristics of six different web-flange junctions and hygrothermal aging effects on one of such junctions. The experimental results indicated that the moment capacity and associated rotational stiffness of J1 junction group specimens was the largest among the junction “J” groups evaluated in this study. In addition, it was concluded that the moment capacity of AJ2-M1 adhesively-bonded junctions was the largest; however, the rotational stiffness of specimens AJ3-M1 and AJ3-M2 were the highest among the “AJ#-M1” group and “AJ#-M2” group, respectively. A general conclusion was reached, based on the experimental results, that is both the WFJ moment capacity and associated rotational stiffness are proportional to the size of three elements: (i) web thickness, (ii) fillet radius, and (iii) flange thickness of the pultruded profile. Results also showed that: (1) the difference in ultimate moment capacity degradation due to hygrothermal effects for WFJs exposed to fresh water and artificial seawater environments at temperatures of 40℃ and 80℃ is relatively small, however, the ultimate moment capacity degradation of specimens exposed to artificial seawater was relatively higher as comparted to those exposed to fresh water environments at a temperature of 60℃; (2) in general, exposure to higher temperatures, results in a relatively higher strength degradation, except for the case of fresh water exposure at a temperature range between 40℃and 60℃.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View