Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Cell autonomous and nonautonomous requirements for Delltalike1 during early mouse retinal neurogenesis

Abstract

Background

In the vertebrate retina, six neuronal and one glial cell class are produced from a common progenitor pool. During neurogenesis, adjacent retinal cells use Notch signaling to maintain a pool of progenitors by blocking particular cells from differentiating prematurely. In mice there are multiple Notch pathway ligands and receptors, but the role(s) of each paralogue during retinal histogenesis remains only partially defined.

Results

Here we analyzed the cell autonomous and nonautonomous requirements for the Deltalike1(Dll1) ligand during prenatal retinogenesis. We used the α-Cre driver to simultaneously delete a Dll1 conditional allele and activate the Z/EG reporter, then quantified Dll1 mutant phenotypes within and outside of this α-Cre GFP-marked lineage. We found that Dll1 activity is required for Hes1 expression, both autonomously and nonautonomously, but were surprised that retinal ganglion cell differentiation is only blocked cell autonomously. Moreover, Dll1 does not act during cone photoreceptor neurogenesis. Finally, Dll1 mutant adult retinas contained small retinal rosettes and RGC patterning defects but were otherwise normal.

Conclusions

Although Dll1 participates in bidirectional (cis + trans) Notch signaling to regulate Hes1 expression, it only acts cell autonomously (in cis) to interpret inhibitory signals from other cells that block RGC neurogenesis. Developmental Dynamics 245:631-640, 2016. © 2016 Wiley Periodicals, Inc.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View