Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Design, Fabrication, and Evaluation of a Parylene Thin-Film Electrode Array for Cochlear Implants.

Abstract

Objective

To improve the existing manually assembled cochlear implant electrode arrays, a thin-film electrode array (TFEA) was microfabricated having a maximum electrode density of 15 sites along an 8-mm length, with each site having a 75 μm × 1.8 μm (diameter × height) disk electrode.

Methods

The microfabrication method adopted photoresist transferring, lift-off, two-step oxygen plasma etching, and fuming nitric acid release to reduce lift-off complexity, protect the metal layer, and increase the release efficiency.

Results

Systematic in vitro characterization showed that the TFEA's bending stiffness was 6.40 × 10-10 N·m2 near the base and 1.26 × 10-10 N·m2 near the apex. The TFEA electrode produced an average impedance of 16 kΩ and a maximum current limit of 800 μA, measured with 1-kHz sinusoidal current using monopolar stimulation in saline. A TFEA prototype was implanted in a cat cochlea to obtain in vivo measurements of electrically evoked auditory brainstem and inferior colliculus responses to monopolar stimulation with 41-μs/phase biphasic pulses. Both physiological responses produced a threshold of ∼300 μA and a dynamic range of 5-8 dB above the threshold. Compared with existing arrays, the present TFEA had 104 times less bending stiffness, 97% less electrode area, and comparable physiological thresholds.

Conclusion

Using a simplified structure and stable fabrication method, the present TEFA produced physical and physiological performance comparable to existing commercial devices.

Significance

The present TFEA represents a step closer toward an automated process replacing the labor-intensive and expensive manual assembly of the cochlear implant electrode arrays.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View