Regularity "in Large" for the 3D Salmon's Planetary Geostrophic Model of Ocean Dynamics
Skip to main content
Open Access Publications from the University of California

Regularity "in Large" for the 3D Salmon's Planetary Geostrophic Model of Ocean Dynamics

  • Author(s): Cao, Chongsheng
  • Titi, Edriss S
  • et al.

It is well known, by now, that the three-dimensional non-viscous planetary geostrophic model, with vertical hydrostatic balance and horizontal Rayleigh friction, coupled to the heat diffusion and transport, is mathematically ill-posed. This is because the no-normal flow physical boundary condition implicitly produces an additional boundary condition for the temperature at the literal boundary. This additional boundary condition is different, because of the Coriolis forcing term, than the no heat flux physical boundary condition. Consequently, the second order parabolic heat equation is over determined with two different boundary conditions. In a previous work we proposed one remedy to this problem by introducing a fourth-order artificial hyper-diffusion to the heat transport equation and proved global regularity for the proposed model. Another remedy for this problem was suggested by R. Salmon by introducing an additional Rayleigh-like friction term for the vertical component of the velocity in the hydrostatic balance equation. In this paper we prove the global, for all time and all initial data, well-posedness of strong solutions to the three-dimensional Salmon's planetary geostrophic model of ocean dynamics. That is, we show global existence, uniqueness and continuous dependence of the strong solutions on initial data for this model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View